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We investigate the energy pathways between the velocity and the magnetic fields in a rotating
plane layer dynamo driven by Rayleigh-Bénard convection using direct numerical simulations. The
kinetic and magnetic energies are divided into mean and turbulent components to study the pro-
duction, transport, and dissipation associated with large and small-scale dynamos. This energy
balance-based characterization reveals distinct mechanisms for large- and small-scale magnetic field
generation in dynamos, depending on the nature of the velocity field and the conditions imposed at
the boundaries.

Hydromagnetic dynamo action is the commonly ac-
cepted source of magnetic fields in planets and stars. We
explore the energy balance in a plane layer convection-
driven Childress-Soward (CS) dynamo [1]. In this simple
Cartesian dynamo model, driven by rotating Rayleigh-
Bénard convection (RBC), the velocity field provides en-
ergy to the magnetic field to sustain the dynamo ac-
tion against Joule dissipation. Our analysis distinguishes
between the part of the kinetic energy that produces
the horizontally-averaged large-scale mean magnetic field
and the small-scale turbulent magnetic field. Based on
this decomposition, we derive the kinetic and magnetic
energy budgets and characterize a dynamo with both
large- and small-scale magnetic fields in terms of their
energy conversion mechanisms.

In this study, the CS dynamo is driven by a classical
Rayleigh-Bénard convection setup with a plane layer of
incompressible, electrically conducting, Boussinesq fluid
kept between two parallel plates with a distance d and
temperature di↵erence �T , where the lower plate is hot-
ter than the upper plate. The system rotates with a
constant angular velocity ⌦ about the vertical axis, anti-
parallel to the gravity g. This fluid has the kinematic vis-
cosity ⌫, thermal di↵usivity , adiabatic volume expan-
sion coe�cient ↵, and magnetic di↵usivity ⌘. The Navier-
Stokes equations, coupled with the energy equation, the
Maxwell equation, and the solenoidal field conditions,
govern the velocity, pressure, temperature, and the mag-
netic field {ui, p, ✓, Bi} as presented in [2, 3]. The govern-
ing non-dimensional parameters are the Rayleigh number
(Ra = g↵�Td

3
/⌫) and Ekman number (E = ⌫/2⌦d2)

representing the thermal forcing and rotation rates, re-
spectively, whereas, the thermal and magnetic Prandtl
numbers (Pr = ⌫/ and Pm = ⌫/⌘) are the properties
of the fluid. The current setup is a local approximation to
the astrophysically more relevant spherical shell dynamo
models [4].

Dynamos are generally classified based on the scale
of the magnetic field generated by them [5]. The mag-
netic field for a large-scale dynamo has a length scale
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larger than the velocity field, whereas the length scale of
the magnetic field is smaller than the velocity field for a
small-scale dynamo. For a plane layer dynamo, this clas-
sification is apparent from the fraction of energy in the
mean magnetic field to the total magnetic energy [4]. The

magnetic Reynolds number at the convective scale gRm,
representing the dominance of electromagnetic induction
over ohmic di↵usion, is one of the important diagnostic
quantities that decides this mean energy fraction. Large-
scale dynamos with high mean energy fraction, O(0.1)
has been found to operate at low magnetic Reynolds
numbers gRm . 13 [4], where kinetic helicity has been
proposed as a driving mechanism. Conversely, higher
values of gRm lead to small-scale magnetic field genera-
tion driven by the stretching of magnetic field lines by
the velocity field, with comparatively lower mean energy
fraction. However, a recent study [6] demonstrates the
existence of large-scale dynamos, despite the presence of
a strongly turbulent velocity field with low helicity. In
the present investigation, we use the kinetic and magnetic
energy budgets to understand the di↵erent mechanisms
associated with large-and small-scale magnetic field gen-
eration.
We perform a Reynolds decomposition of the vari-

ables into mean and fluctuating parts [5] such that
�(x, y, z, t) = �̄(z, t) + �

0(x, y, z, t) where � =
{ui, p, ✓, Bi}. Here, the over-bar denotes an average over
the horizontal directions[3, 4]. The kinetic energy(K =
1/2uiui) and magnetic energy (M = 1/2BiBi) are also
divided into the mean (K and M) and turbulent (K and
M) components, and are presented in equations 1-4.
This decomposition into mean and turbulent parts of the
energies is the primary distinctive feature of the present
study from an earlier budget analysis of a dynamo [7].
The turbulent kinetic energy (TKE) [3] evolves as:

dK/dt = S + B �D � @Tj/@xj + P, (1)

where K = 1/2u0
iu

0
i is the TKE, S = �u0

iu
0
j@ūi/@xj

is the production of TKE by mean shear, B = u0
3✓

0

is the conversion of available potential energy (APE)
to TKE by the turbulent buoyancy flux [8], D =p
Pr/Ra @u0

i/@xj@u
0
i/@xj is the viscous dissipation

which converts TKE to internal energy (IE), @Tj/@xj
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is the redistribution of TKE [9], representing the di-
vergence of the TKE flux Tj = Tp + Tt + Tv + TM .
The components of the TKE flux are the pressure flux,
Tp = u0

jp
0, the turbulent flux Tt = 1

2u
0
iu

0
iu

0
j , the vis-

cous flux Tv = �
p

Pr/Ra@K/@xj , and the magnetic

flux TM = �Bju
0
iB

0
i � u0

iB
0
iB

0
j . In equation 1, the term

P represents the production of K due to the work done
by the Lorentz force on the flow field. It can be fur-
ther divided into three components P = �P1 +P2 �P3,
where P1 = BjB

0
i@u

0
i/@xj is the production of TKE due

to work done by the fluctuating strain rate on the mean
magnetic field, P2 = u0

iB
0
j@Bi/@xj signifies the produc-

tion of TKE due to mean magnetic field gradient and
P3 = B0

iB
0
j@u

0
i/@xj represents the amplification (or at-

tenuation) of the magnetic energy, due to the work done
by stretching (or squeezing) of magnetic field lines by the
fluctuating velocity gradients.

The mean kinetic energy (MKE) budget is expressed
as,

dK/dt = �S +B�D� @Tj/@xj + P4 � P5 (2)

where K = 1/2uiui is the MKE, B = u3✓ is the mean
buoyancy flux, D =

p
Pr/Ra@ui/@xj@ui@xj is the mean

viscous dissipation, and @Tj/@xj is the divergence of the
MKE flux Tj = ujp + 1/2u0

iu
0
jui �

p
Pr/Ra@K/@xj �

B0
iB

0
jui � BiBjui. P4 = B0

iB
0
j@ui/@xj represents the

work done by the mean shear on the fluctuating compo-
nent of the magnetic fields whereas, the work done on the
mean component of the magnetic fields is represented by
P5 = BiBj@ui/@xj .

The equations for the evolution of the turbulent and
the mean magnetic energies are presented below. As the
Maxwell equation [2, 3] is similar to the vorticity trans-
port equation, the magnetic energy equations resemble
enstrophy transport equations[10]. The turbulent mag-
netic energy (TME) budget equation is given below.

dM/dt = �DM � @T M
j /@xj + PM (3)

where, M = 1/2B0
iB

0
i is the TME, DM =

1/Pm
p

Pr/Ra @B0
i/@xj@B

0
i/@xj is the Joule dissipa-

tion, @T M
j /@xj is the redistribution of TME flux given

by T M
j = 1/2B0

iB
0
iu

0
j � 1/Pm

p
Pr/Ra@M/@xj . Here,

the energy exchange terms can be expressed as PM =
P1 + P3 + P4 � P6, where P6 = u0

jB
0
i@Bi/@xj exchange

energy between the turbulent and mean magnetic fields.
We can anticipate its appearance in the mean magnetic
energy (MME) equations with an opposite sign.

dM/dt = �DM � @TM
j /@xj +PM (4)

where, M = 1/2BiBi is the MME, DM =
1/Pm

p
Pr/Ra@Bi/@xj@Bi/@xj is the mean Joule dis-

sipation, and @TM
j @xj is the divergence of MME flux

TM
j = Biu

0
jB

0
i � Biu

0
iB

0
j � 1/Pm

p
Pr/Ra

@M
@xj

. Energy

exchange terms in the MME equation can be expressed
as PM = �P2 + P5 + P6.

FIG. 1. Energy pathways between the kinetic and mag-
netic energies in a convection-driven dynamo. The energetic
terms shown here are volume-averaged as indicated by an-
gular brackets h.i. The energy pathways marked in grey are
negligible in the absence of a mean flow.

We plot an energy pathway diagram by averaging the
terms in the energy budget equations in the vertical direc-
tion to obtain the volume averaged quantities, as shown
in figure 1. The transport terms become negligible due
to this volume-averaging, and we can demonstrate the
conversion paths between KE and ME sustaining the dy-
namo action. The APE is converted to MKE and TKE
via the mean and turbulent part of the buoyancy flux [8]
respectively. The shear production term, S, may also
produce TKE in the presence of a mean shear. The
small-scale turbulent flow can exchange energy with the
small-scale magnetic field through P1 or P3 or both, or
with the large-scale mean magnetic field through P2. The
large-scale flow can exchange energy with the small-scale
and large-scale magnetic field through P4 and P5, re-
spectively. The term P6 may produce TME by extract-
ing energy from the mean magnetic field. It may also
produce MME by transferring energy from the turbu-
lent magnetic field to the mean magnetic field. Finally,
the viscous dissipation components (D and D) convert
KE to IE, while the ME is transformed to IE via Joule
dissipation components (DM and DM ). In the absence
of a horizontally-averaged mean velocity field, as in the
present problem, the energy pathways associated with
MKE, marked in grey, are insignificant.
To characterize the di↵erent types of dynamos based

on the energy pathway diagram in figure 1, we perform
DNS of RBC-driven dynamos in a doubly-periodic do-
main of unit aspect ratio. We use 1024 uniform grids in
each horizontal direction (x1 and x2) and 256 grids in the
vertical direction (x3) that are clustered near the bound-
aries. Details of the solver, the validation studies, the
rationale behind the choice of the grids, and the domain
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case R Pm RoC fRa gRm hMi/M M/E Nu hP1i �hP2i hP3i �hP6i hDi hDM i hDM i type

R10Pm1N 10 1 0.069 76.0 33.4 0.0006 0.1749 55.0 0.0002 0.0000 0.3491 0.0000 0.6232 0.3507 0.0000 small
R10Pm1F 10 1 0.074 87.0 25.9 0.0097 0.9350 64.7 0.0004 0.0014 0.7549 0.0013 0.1627 0.7612 0.0001 small
R10Pm0.1F 10 0.1 0.074 87.0 3.2 0.2811 0.7605 60.7 0.1397 0.0093 0.5696 0.0069 0.2457 0.7189 0.0026 large
R2Pm0.2N 2 0.2 0.031 15.2 1.5 0.6129 0.4866 8.5 0.3399 0.0068 0.0538 -0.0055 0.6252 0.3878 0.0120 large

TABLE I. Volume-averaged diagnostic quantities for the dynamo simulations at E = 5 ⇥ 10�7 and Pr = 1. The last column
indicates the dynamo types.

FIG. 2. The structure of the magnetic field generated by
the dynamos for the cases (a) R10Pm1F, (b) R10Pm1N, (c)
R10Pm0.1F,(d) R2Pm0.2N as visualized by the isosurface
B1 = ±0.03 (olive-positive, blue-negative)

size are given in [2, 3]. We choose two dynamos at R =
Ra/Rac = 10 and Pm = 1 where Rac is the Rayleigh
number at the onset of non-magnetic rotating convection
at E = 5⇥ 10�7 [3]. At this Ekman number, the critical
Rayleigh number has the value Rac = 3.830 ⇥ 109 for
no-slip and Rac = 2.192⇥109 for free-slip boundary con-
ditions. In table I, the case R10Pm1N is simulated using
no-slip and electrically conducting boundaries, whereas
free-slip and pseudo-vacuum boundaries [3] are incorpo-
rated for the R10Pm1F case. The instantaneous snap-
shots of the magnetic field in the x1-direction, as de-
picted in figures 2a and b, illustrate the small-scale na-
ture of the magnetic field produced by these turbulent
dynamos. Another turbulent dynamo case has been sim-
ulated, by lowering Pm to 0.1, following [6], as denoted
by R10Pm0.1F in table I. In this case, lowering Pm leads
to large-scale magnetic field generation, as evident from
figure 2c. Additionally, we simulate a case with R = 2
and Pm = 0.2 and designate it as R2Pm0.2N. This case
is also a large-scale dynamo with weakly-nonlinear con-
vection [11] as demonstrated by the large-scale magnetic
field in figure 2d.

The volume-averaged diagnostic parameters reported
in table I outline the global behavior of these dynamos.
The convective Rossby number, RoC = E(Ra/Pr)1/2,
representing the ratio of inertia to Coriolis force, is of
the order 10�2, indicating the dominant role of the Cori-
olis force. Therefore, all the dynamos are produced by
rapidly rotating convection with comparatively small in-
ertia [3]. The reduced Rayleigh number fRa = RaE

4/3

indicates that the dynamos operate in a turbulent state
of the flow for R = 10, whereas weakly-nonlinear colum-
nar convection can be observed for R = 2 [2, 11]. The

reduced magnetic Reynolds number gRm = RmE
1/3 rep-

resents the strength of electromagnetic induction relative
to ohmic di↵usion at the convective scales. Large-scale
dynamos are expected to be found for gRm . O(1) [6].
The distinction between large- and small-scale dynamos
[4] is apparent from the mean energy fraction hMi/M ,
where M = hMi + hMi. For the small-scale dynamos,
the volume-averaged MME is three orders of magnitude
smaller than the TME, while they are of the same order
for the large-scale dynamos. Additionally, the fraction of
magnetic energy M/E, where E = M + K is the total
energy, can be regarded as the e�ciency of the dynamo
action.

Figure 3 demonstrates the vertical variation of the hor-
izontally averaged TKE terms in equation 1 for the four
cases. All the terms in this equation have been averaged
over time, and normalized by (RaPr)1/2/(Nu�1) in the
figure, so that the volume average of the source term (B)
is unity[12]. The Nusselt number Nu = qd/k�T , where
q is the total vertical heat flux, is a non-dimensional mea-
sure of convective heat transport through the fluid layer,
as reported in table I. At a statistically stationary state,
there is a primary balance among the turbulent buoyancy
flux (B), TKE transport (@Tj/@xj), viscous dissipation
(D) and the conversion to magnetic energy (P) for all the
dynamos. The individual components of P and @Tj/@xj

are shown in the top and the bottom insets, respectively.
For instance, in figure 3a, the TKE is generated by B
in the bulk, which is partly transported by @Tj/@xj to-
wards the boundaries where D dominates. Among the
transport components, the pressure transport (@TP /@xj)
is the primary mechanism that transfers TKE towards
boundaries while the viscous transport is higher near the
boundaries as observed in the bottom inset, similar to
non-rotating non-magnetic RBC [9]. The vertical varia-
tion of all the terms, except P, are qualitatively similar
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FIG. 3. Vertical variation of the terms in TKE budget for (a)
R10Pm1F, (b) R10Pm1N, (c) R10Pm0.1F ,(d) R2Pm0.2N ,
cases. The insets in the top left corners show the compo-
nents of the energy exchange P. The insets in the bottom left
corners shows a breakup of the transport terms @Tj/@xj

with non-magnetic rotating convection [13, 14].
The small-scale dynamos R10Pm1N and R10Pm1F in

figure 3a and 3b di↵er only in the boundary conditions.
The choice of a no-slip boundary condition in R10Pm1N
results in an Ekman layer near the boundaries. More-
over, the perfectly conducting magnetic boundary condi-
tion constrains the magnetic field to be horizontal near
the boundaries as compared to a vertical magnetic field
at the boundaries for a pseudo-vacuum boundary condi-
tion in R10Pm1F [3]. For both of these dynamos, the
small-scale production of magnetic energy (P3) is the
dominant component of P. For R10Pm1N, the amount of
TKE converted to IE via D is higher than the production
of magnetic energy (P), whereas the latter is higher for
R10Pm1F (see also table I). Another di↵erence between
these dynamos arises from the transport of TKE due to
magnetic energy, which is dominated by the small-scale
flux u0

iB
0
iB

0
j , while the large-scale flux Bju

0
iB

0
i remains

small. The small-scale magnetic field transports TKE
towards the interior from the boundaries in R10Pm1F,
while the same term is small for R10Pm1N. The viscous
transport dominates the other transport terms near the
boundaries for R10Pm1N. However, this term is small
near the boundaries in R10Pm1F owing to the absence
of an Ekman layer.

A comparison between the small-scale dynamo
R10Pm1F with the large-scale dynamo R10Pm0.1F re-
veals significant di↵erences in the energy pathways. The
mean magnetic field plays an important role in convert-
ing TKE to TME through the term P1 in R10Pm0.1F,
while this term is insignificant for R10Pm1F. However,
for both cases, the redistribution of TKE by the magnetic
field plays a part in the budget with a major contribu-
tion from the small-scale flux u0

iB
0
iB

0
j in R10Pm1F, while

the large-scale flux Bju
0
iB

0
i is significant for R10Pm0.1F.
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Additionally, we can contrast the large-scale turbulent
dynamo R10Pm0.1F against a large-scale dynamo with
weakly non-linear convection R2Pm0.2N in figure 3.
For R2Pm0.2N, the conversion of TKE to TME occurs
through P1 while the small-scale production of TME, P3

remains small. Among these four dynamos, the part of
TKE that converts to IE due to D is higher, as compared
with the conversion to magnetic energy via P, when no-
slip boundary condition is used (see table I). The conver-
sion to magnetic energy P is higher with free-slip con-
ditions, which makes R10Pm1F and R10Pm0.1F more
e�cient dynamos with higher magnetic energy fraction
M/E, as compared to the no-slip boundary condition.
Also, the transport of TKE by the magnetic field is sig-
nificant only for pseudo-vacuum magnetic boundary con-
ditions.
The magnetic energy balance of the dynamos is pre-

sented in figure 4. The solid lines represent the terms
in the TME budget and are plotted at the bottom ab-
scissa. The terms of the MME budget are represented
by the dashed lines and are plotted at the top abscissa.
The energy flow direction of each dynamo in figure 1 be-
comes apparent with the help of table I and figure 4.
The terms P1 and P3 are positive, representing a con-
version of TKE to TME by the action of a large-scale
and a small-scale magnetic field, respectively. The term
P2 is negative, indicating a generation of MME at the
expense of TKE. The term P6 has negative values indi-
cating a conversion of MME to generate TME, except for
the case R2Pm0.2N where the turbulent magnetic field
provides energy to the mean magnetic field, exhibiting
an upscale transfer of energy.
In figure 4a the small-scale dynamo R10Pm1N has a

primary balance between the small-scale production P3

and the Joule dissipation DM . In comparison to these
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TME terms, the MME terms are three orders of magni-
tude smaller. The part of TKE that converts to MME
(P2) again transforms to TME, with a small mean dissi-
pation DM . A similar energy conversion is observed in
R10Pm1F in figure 4b, though the MME budget terms
are one order of magnitude higher than R10Pm1N. Un-
like R10Pm1N, the transport of TME @T M

j /@xj plays a
significant role in the balance in R10Pm1F by redistribut-
ing the TME from the boundaries towards the interior
of the domain. For the large-scale dynamos R10Pm0.1
in figure 4c, the MME terms increase by another or-
der of magnitude compared to the small-scale dynamo
R10Pm1F. Further, the large-scale production of TME
term P1 now makes a significant contribution to the bud-
get in the interior of the domain. In the MME budget,
P2 is partially balanced by P6 in the interior. However,
the rest of the MME is transported towards the bound-
ary and converted to IE by Joule dissipation DM . The
large-scale dynamo in figure 4d demonstrates a transfer
of TME to MME by P6 near the boundaries. This is
the only dynamo where both the small-scale velocity and
magnetic fields provide energy to the mean magnetic field
through P2 and P6. Additionally, the large-scale produc-
tion P1 is the primary source of TME generation whereas
P3 remains small in this case, in contrast to R10Pm0.1F
in figure 4c.

In summary, we have performed direct numerical sim-

ulations of four dynamos to compare their magnetic
and kinetic energy budgets. The small-scale dynamos
R10Pm1N and R10Pm1F di↵er by the relative magni-
tude of small-scale magnetic energy production P3 and
viscous dissipation D, with the latter being higher for
R10Pm1N. This indicates comparatively e�cient dy-
namo action with free-slip, pseudo-vacuum boundaries
that also promote the redistribution of TKE by the mag-
netic field, unlike a dynamo with no-slip, perfectly con-
ducting boundaries. Nevertheless, the mean Joule dissi-
pation is small for small-scale dynamos. The mechanism
for transforming TKE to TME di↵ers between a large-
and a small-scale turbulent dynamo, with the large-scale
production of TME P1 playing a significant role in the
former. This large-scale production P1 becomes the dom-
inant mechanism of TME production in the weakly non-
linear dynamo R2Pm0.2N. MME is produced from TKE
via the term P2 in the presence of a mean magnetic field
gradient. For R2Pm0.2N, an upscale transfer of energy
occurs through P6, which produces MME at the expense
of TME. The scaling of these energy budget terms in
the limit of small viscous and inertial forces, following
[15], should provide valuable insights into the mechanism
of energy conversion in astrophysical dynamos. Addi-
tionally, a shell-to-shell energy transfer analysis [14] may
elucidate further details on the mechanism of large-scale
magnetic field generation.
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